Models
Hindsight uses several machine learning models for different tasks.
Overview
| Model Type | Purpose | Default | Configurable |
|---|---|---|---|
| LLM | Fact extraction, reasoning, generation | Provider-specific | Yes |
| Embedding | Vector representations for semantic search | BAAI/bge-small-en-v1.5 | Yes |
| Cross-Encoder | Reranking search results | cross-encoder/ms-marco-MiniLM-L-6-v2 | Yes |
All local models (embedding, cross-encoder) are automatically downloaded from HuggingFace on first run.
LLM
Used for fact extraction, entity resolution, opinion generation, and answer synthesis.
Supported providers: OpenAI, Anthropic, Gemini, Groq, Ollama, LM Studio, and any OpenAI-compatible API
Hindsight works with any provider that exposes an OpenAI-compatible API (e.g., Azure OpenAI). Simply set HINDSIGHT_API_LLM_PROVIDER=openai and configure HINDSIGHT_API_LLM_BASE_URL to point to your provider's endpoint.
See Configuration for setup examples.
Tested Models
The following models have been tested and verified to work correctly with Hindsight:
| Provider | Model |
|---|---|
| OpenAI | gpt-5.2 |
| OpenAI | gpt-5 |
| OpenAI | gpt-5-mini |
| OpenAI | gpt-5-nano |
| OpenAI | gpt-4.1-mini |
| OpenAI | gpt-4.1-nano |
| OpenAI | gpt-4o-mini |
| Anthropic | claude-sonnet-4-20250514 |
| Anthropic | claude-3-5-sonnet-20241022 |
| Gemini | gemini-3-pro-preview |
| Gemini | gemini-2.5-flash |
| Gemini | gemini-2.5-flash-lite |
| Groq | openai/gpt-oss-120b |
| Groq | openai/gpt-oss-20b |
Using Other Models
Other LLM models not listed above may work with Hindsight, but they must support at least 65,000 output tokens to ensure reliable fact extraction. If you need support for a specific model that doesn't meet this requirement, please open an issue to request an exception.
Configuration
# Groq (recommended)
export HINDSIGHT_API_LLM_PROVIDER=groq
export HINDSIGHT_API_LLM_API_KEY=gsk_xxxxxxxxxxxx
export HINDSIGHT_API_LLM_MODEL=openai/gpt-oss-20b
# OpenAI
export HINDSIGHT_API_LLM_PROVIDER=openai
export HINDSIGHT_API_LLM_API_KEY=sk-xxxxxxxxxxxx
export HINDSIGHT_API_LLM_MODEL=gpt-4o
# Gemini
export HINDSIGHT_API_LLM_PROVIDER=gemini
export HINDSIGHT_API_LLM_API_KEY=xxxxxxxxxxxx
export HINDSIGHT_API_LLM_MODEL=gemini-2.0-flash
# Anthropic
export HINDSIGHT_API_LLM_PROVIDER=anthropic
export HINDSIGHT_API_LLM_API_KEY=sk-ant-xxxxxxxxxxxx
export HINDSIGHT_API_LLM_MODEL=claude-sonnet-4-20250514
# Ollama (local)
export HINDSIGHT_API_LLM_PROVIDER=ollama
export HINDSIGHT_API_LLM_BASE_URL=http://localhost:11434/v1
export HINDSIGHT_API_LLM_MODEL=llama3
# LM Studio (local)
export HINDSIGHT_API_LLM_PROVIDER=lmstudio
export HINDSIGHT_API_LLM_BASE_URL=http://localhost:1234/v1
export HINDSIGHT_API_LLM_MODEL=your-local-model
Note: The LLM is the primary bottleneck for retain operations. See Performance for optimization strategies.
Embedding Model
Converts text into dense vector representations for semantic similarity search.
Default: BAAI/bge-small-en-v1.5 (384 dimensions, ~130MB)
Supported Providers
| Provider | Description | Best For |
|---|---|---|
local | SentenceTransformers (default) | Development, low latency |
openai | OpenAI embeddings API | Production, high quality |
cohere | Cohere embeddings API | Production, multilingual |
tei | HuggingFace Text Embeddings Inference | Production, self-hosted |
litellm | LiteLLM proxy (unified gateway) | Multi-provider setups |
Local Models
| Model | Dimensions | Use Case |
|---|---|---|
BAAI/bge-small-en-v1.5 | 384 | Default, fast, good quality |
sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 | 384 | Multilingual (50+ languages) |
OpenAI Models
| Model | Dimensions | Use Case |
|---|---|---|
text-embedding-3-small | 1536 | Default OpenAI, cost-effective |
text-embedding-3-large | 3072 | Higher quality, more expensive |
text-embedding-ada-002 | 1536 | Legacy model |
Cohere Models
| Model | Dimensions | Use Case |
|---|---|---|
embed-english-v3.0 | 1024 | English text |
embed-multilingual-v3.0 | 1024 | 100+ languages |
Hindsight automatically detects the embedding dimension at startup and adjusts the database schema. Once memories are stored, you cannot change dimensions without losing data.
Configuration Examples:
# Local provider (default)
export HINDSIGHT_API_EMBEDDINGS_PROVIDER=local
export HINDSIGHT_API_EMBEDDINGS_LOCAL_MODEL=BAAI/bge-small-en-v1.5
# OpenAI
export HINDSIGHT_API_EMBEDDINGS_PROVIDER=openai
export HINDSIGHT_API_EMBEDDINGS_OPENAI_API_KEY=sk-xxxxxxxxxxxx
export HINDSIGHT_API_EMBEDDINGS_OPENAI_MODEL=text-embedding-3-small
# Cohere
export HINDSIGHT_API_EMBEDDINGS_PROVIDER=cohere
export HINDSIGHT_API_COHERE_API_KEY=your-api-key
export HINDSIGHT_API_EMBEDDINGS_COHERE_MODEL=embed-english-v3.0
# TEI (self-hosted)
export HINDSIGHT_API_EMBEDDINGS_PROVIDER=tei
export HINDSIGHT_API_EMBEDDINGS_TEI_URL=http://localhost:8080
# LiteLLM proxy
export HINDSIGHT_API_EMBEDDINGS_PROVIDER=litellm
export HINDSIGHT_API_LITELLM_API_BASE=http://localhost:4000
export HINDSIGHT_API_EMBEDDINGS_LITELLM_MODEL=text-embedding-3-small
See Configuration for all options including Azure OpenAI and custom endpoints.
Cross-Encoder (Reranker)
Reranks initial search results to improve precision.
Default: cross-encoder/ms-marco-MiniLM-L-6-v2 (~85MB)
Supported Providers
| Provider | Description | Best For |
|---|---|---|
local | SentenceTransformers CrossEncoder (default) | Development, low latency |
cohere | Cohere rerank API | Production, high quality |
tei | HuggingFace Text Embeddings Inference | Production, self-hosted |
flashrank | FlashRank (lightweight, fast) | Resource-constrained environments |
litellm | LiteLLM proxy (unified gateway) | Multi-provider setups |
rrf | RRF-only (no neural reranking) | Testing, minimal resources |
Local Models
| Model | Use Case |
|---|---|
cross-encoder/ms-marco-MiniLM-L-6-v2 | Default, fast |
cross-encoder/ms-marco-MiniLM-L-12-v2 | Higher accuracy |
cross-encoder/mmarco-mMiniLMv2-L12-H384-v1 | Multilingual |
Cohere Models
| Model | Use Case |
|---|---|
rerank-english-v3.0 | English text |
rerank-multilingual-v3.0 | 100+ languages |
LiteLLM Supported Providers
LiteLLM supports multiple reranking providers via the /rerank endpoint:
| Provider | Model Example |
|---|---|
| Cohere | cohere/rerank-english-v3.0 |
| Together AI | together_ai/... |
| Voyage AI | voyage/rerank-2 |
| Jina AI | jina_ai/... |
| AWS Bedrock | bedrock/... |
Configuration Examples:
# Local provider (default)
export HINDSIGHT_API_RERANKER_PROVIDER=local
export HINDSIGHT_API_RERANKER_LOCAL_MODEL=cross-encoder/ms-marco-MiniLM-L-6-v2
# Cohere
export HINDSIGHT_API_RERANKER_PROVIDER=cohere
export HINDSIGHT_API_COHERE_API_KEY=your-api-key
export HINDSIGHT_API_RERANKER_COHERE_MODEL=rerank-english-v3.0
# TEI (self-hosted)
export HINDSIGHT_API_RERANKER_PROVIDER=tei
export HINDSIGHT_API_RERANKER_TEI_URL=http://localhost:8081
# FlashRank (lightweight)
export HINDSIGHT_API_RERANKER_PROVIDER=flashrank
# LiteLLM proxy
export HINDSIGHT_API_RERANKER_PROVIDER=litellm
export HINDSIGHT_API_LITELLM_API_BASE=http://localhost:4000
export HINDSIGHT_API_RERANKER_LITELLM_MODEL=cohere/rerank-english-v3.0
# RRF-only (no neural reranking)
export HINDSIGHT_API_RERANKER_PROVIDER=rrf
See Configuration for all options including Azure-hosted endpoints and batch settings.